\(\int \frac {1}{\sqrt {b d+2 c d x} (a+b x+c x^2)} \, dx\) [1291]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 26, antiderivative size = 101 \[ \int \frac {1}{\sqrt {b d+2 c d x} \left (a+b x+c x^2\right )} \, dx=-\frac {2 \arctan \left (\frac {\sqrt {d (b+2 c x)}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )}{\left (b^2-4 a c\right )^{3/4} \sqrt {d}}-\frac {2 \text {arctanh}\left (\frac {\sqrt {d (b+2 c x)}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )}{\left (b^2-4 a c\right )^{3/4} \sqrt {d}} \]

[Out]

-2*arctan((d*(2*c*x+b))^(1/2)/(-4*a*c+b^2)^(1/4)/d^(1/2))/(-4*a*c+b^2)^(3/4)/d^(1/2)-2*arctanh((d*(2*c*x+b))^(
1/2)/(-4*a*c+b^2)^(1/4)/d^(1/2))/(-4*a*c+b^2)^(3/4)/d^(1/2)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 101, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {708, 335, 218, 212, 209} \[ \int \frac {1}{\sqrt {b d+2 c d x} \left (a+b x+c x^2\right )} \, dx=-\frac {2 \arctan \left (\frac {\sqrt {d (b+2 c x)}}{\sqrt {d} \sqrt [4]{b^2-4 a c}}\right )}{\sqrt {d} \left (b^2-4 a c\right )^{3/4}}-\frac {2 \text {arctanh}\left (\frac {\sqrt {d (b+2 c x)}}{\sqrt {d} \sqrt [4]{b^2-4 a c}}\right )}{\sqrt {d} \left (b^2-4 a c\right )^{3/4}} \]

[In]

Int[1/(Sqrt[b*d + 2*c*d*x]*(a + b*x + c*x^2)),x]

[Out]

(-2*ArcTan[Sqrt[d*(b + 2*c*x)]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])])/((b^2 - 4*a*c)^(3/4)*Sqrt[d]) - (2*ArcTanh[Sqrt
[d*(b + 2*c*x)]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])])/((b^2 - 4*a*c)^(3/4)*Sqrt[d])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 708

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[x^m*(
a - b^2/(4*c) + (c*x^2)/e^2)^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0]
&& EqQ[2*c*d - b*e, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {1}{\sqrt {x} \left (a-\frac {b^2}{4 c}+\frac {x^2}{4 c d^2}\right )} \, dx,x,b d+2 c d x\right )}{2 c d} \\ & = \frac {\text {Subst}\left (\int \frac {1}{a-\frac {b^2}{4 c}+\frac {x^4}{4 c d^2}} \, dx,x,\sqrt {d (b+2 c x)}\right )}{c d} \\ & = -\frac {2 \text {Subst}\left (\int \frac {1}{\sqrt {b^2-4 a c} d-x^2} \, dx,x,\sqrt {d (b+2 c x)}\right )}{\sqrt {b^2-4 a c}}-\frac {2 \text {Subst}\left (\int \frac {1}{\sqrt {b^2-4 a c} d+x^2} \, dx,x,\sqrt {d (b+2 c x)}\right )}{\sqrt {b^2-4 a c}} \\ & = -\frac {2 \tan ^{-1}\left (\frac {\sqrt {d (b+2 c x)}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )}{\left (b^2-4 a c\right )^{3/4} \sqrt {d}}-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {d (b+2 c x)}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )}{\left (b^2-4 a c\right )^{3/4} \sqrt {d}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.17 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.51 \[ \int \frac {1}{\sqrt {b d+2 c d x} \left (a+b x+c x^2\right )} \, dx=\frac {(1-i) \sqrt {b+2 c x} \left (\arctan \left (1-\frac {(1+i) \sqrt {b+2 c x}}{\sqrt [4]{b^2-4 a c}}\right )-\arctan \left (1+\frac {(1+i) \sqrt {b+2 c x}}{\sqrt [4]{b^2-4 a c}}\right )-\text {arctanh}\left (\frac {(1+i) \sqrt [4]{b^2-4 a c} \sqrt {b+2 c x}}{\sqrt {b^2-4 a c}+i (b+2 c x)}\right )\right )}{\left (b^2-4 a c\right )^{3/4} \sqrt {d (b+2 c x)}} \]

[In]

Integrate[1/(Sqrt[b*d + 2*c*d*x]*(a + b*x + c*x^2)),x]

[Out]

((1 - I)*Sqrt[b + 2*c*x]*(ArcTan[1 - ((1 + I)*Sqrt[b + 2*c*x])/(b^2 - 4*a*c)^(1/4)] - ArcTan[1 + ((1 + I)*Sqrt
[b + 2*c*x])/(b^2 - 4*a*c)^(1/4)] - ArcTanh[((1 + I)*(b^2 - 4*a*c)^(1/4)*Sqrt[b + 2*c*x])/(Sqrt[b^2 - 4*a*c] +
 I*(b + 2*c*x))]))/((b^2 - 4*a*c)^(3/4)*Sqrt[d*(b + 2*c*x)])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(227\) vs. \(2(81)=162\).

Time = 2.80 (sec) , antiderivative size = 228, normalized size of antiderivative = 2.26

method result size
derivativedivides \(\frac {d \sqrt {2}\, \left (\ln \left (\frac {2 c d x +b d +\left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {1}{4}} \sqrt {2 c d x +b d}\, \sqrt {2}+\sqrt {4 a c \,d^{2}-b^{2} d^{2}}}{2 c d x +b d -\left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {1}{4}} \sqrt {2 c d x +b d}\, \sqrt {2}+\sqrt {4 a c \,d^{2}-b^{2} d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {2 c d x +b d}}{\left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {2 c d x +b d}}{\left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{2 \left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {3}{4}}}\) \(228\)
default \(\frac {d \sqrt {2}\, \left (\ln \left (\frac {2 c d x +b d +\left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {1}{4}} \sqrt {2 c d x +b d}\, \sqrt {2}+\sqrt {4 a c \,d^{2}-b^{2} d^{2}}}{2 c d x +b d -\left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {1}{4}} \sqrt {2 c d x +b d}\, \sqrt {2}+\sqrt {4 a c \,d^{2}-b^{2} d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {2 c d x +b d}}{\left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {2 c d x +b d}}{\left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{2 \left (4 a c \,d^{2}-b^{2} d^{2}\right )^{\frac {3}{4}}}\) \(228\)
pseudoelliptic \(\frac {d \sqrt {2}\, \left (2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \left (2 c x +b \right )}+\left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {1}{4}}}{\left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {1}{4}}}\right )+\ln \left (\frac {\left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {1}{4}} \sqrt {d \left (2 c x +b \right )}\, \sqrt {2}+\sqrt {d^{2} \left (4 a c -b^{2}\right )}+d \left (2 c x +b \right )}{\sqrt {d^{2} \left (4 a c -b^{2}\right )}-\left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {1}{4}} \sqrt {d \left (2 c x +b \right )}\, \sqrt {2}+d \left (2 c x +b \right )}\right )-2 \arctan \left (\frac {-\sqrt {2}\, \sqrt {d \left (2 c x +b \right )}+\left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {1}{4}}}{\left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {1}{4}}}\right )\right )}{2 \left (d^{2} \left (4 a c -b^{2}\right )\right )^{\frac {3}{4}}}\) \(242\)

[In]

int(1/(2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a),x,method=_RETURNVERBOSE)

[Out]

1/2*d/(4*a*c*d^2-b^2*d^2)^(3/4)*2^(1/2)*(ln((2*c*d*x+b*d+(4*a*c*d^2-b^2*d^2)^(1/4)*(2*c*d*x+b*d)^(1/2)*2^(1/2)
+(4*a*c*d^2-b^2*d^2)^(1/2))/(2*c*d*x+b*d-(4*a*c*d^2-b^2*d^2)^(1/4)*(2*c*d*x+b*d)^(1/2)*2^(1/2)+(4*a*c*d^2-b^2*
d^2)^(1/2)))+2*arctan(2^(1/2)/(4*a*c*d^2-b^2*d^2)^(1/4)*(2*c*d*x+b*d)^(1/2)+1)-2*arctan(-2^(1/2)/(4*a*c*d^2-b^
2*d^2)^(1/4)*(2*c*d*x+b*d)^(1/2)+1))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.26 (sec) , antiderivative size = 407, normalized size of antiderivative = 4.03 \[ \int \frac {1}{\sqrt {b d+2 c d x} \left (a+b x+c x^2\right )} \, dx=-\left (\frac {1}{{\left (b^{6} - 12 \, a b^{4} c + 48 \, a^{2} b^{2} c^{2} - 64 \, a^{3} c^{3}\right )} d^{2}}\right )^{\frac {1}{4}} \log \left ({\left (b^{2} - 4 \, a c\right )} d \left (\frac {1}{{\left (b^{6} - 12 \, a b^{4} c + 48 \, a^{2} b^{2} c^{2} - 64 \, a^{3} c^{3}\right )} d^{2}}\right )^{\frac {1}{4}} + \sqrt {2 \, c d x + b d}\right ) - i \, \left (\frac {1}{{\left (b^{6} - 12 \, a b^{4} c + 48 \, a^{2} b^{2} c^{2} - 64 \, a^{3} c^{3}\right )} d^{2}}\right )^{\frac {1}{4}} \log \left (i \, {\left (b^{2} - 4 \, a c\right )} d \left (\frac {1}{{\left (b^{6} - 12 \, a b^{4} c + 48 \, a^{2} b^{2} c^{2} - 64 \, a^{3} c^{3}\right )} d^{2}}\right )^{\frac {1}{4}} + \sqrt {2 \, c d x + b d}\right ) + i \, \left (\frac {1}{{\left (b^{6} - 12 \, a b^{4} c + 48 \, a^{2} b^{2} c^{2} - 64 \, a^{3} c^{3}\right )} d^{2}}\right )^{\frac {1}{4}} \log \left (-i \, {\left (b^{2} - 4 \, a c\right )} d \left (\frac {1}{{\left (b^{6} - 12 \, a b^{4} c + 48 \, a^{2} b^{2} c^{2} - 64 \, a^{3} c^{3}\right )} d^{2}}\right )^{\frac {1}{4}} + \sqrt {2 \, c d x + b d}\right ) + \left (\frac {1}{{\left (b^{6} - 12 \, a b^{4} c + 48 \, a^{2} b^{2} c^{2} - 64 \, a^{3} c^{3}\right )} d^{2}}\right )^{\frac {1}{4}} \log \left (-{\left (b^{2} - 4 \, a c\right )} d \left (\frac {1}{{\left (b^{6} - 12 \, a b^{4} c + 48 \, a^{2} b^{2} c^{2} - 64 \, a^{3} c^{3}\right )} d^{2}}\right )^{\frac {1}{4}} + \sqrt {2 \, c d x + b d}\right ) \]

[In]

integrate(1/(2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a),x, algorithm="fricas")

[Out]

-(1/((b^6 - 12*a*b^4*c + 48*a^2*b^2*c^2 - 64*a^3*c^3)*d^2))^(1/4)*log((b^2 - 4*a*c)*d*(1/((b^6 - 12*a*b^4*c +
48*a^2*b^2*c^2 - 64*a^3*c^3)*d^2))^(1/4) + sqrt(2*c*d*x + b*d)) - I*(1/((b^6 - 12*a*b^4*c + 48*a^2*b^2*c^2 - 6
4*a^3*c^3)*d^2))^(1/4)*log(I*(b^2 - 4*a*c)*d*(1/((b^6 - 12*a*b^4*c + 48*a^2*b^2*c^2 - 64*a^3*c^3)*d^2))^(1/4)
+ sqrt(2*c*d*x + b*d)) + I*(1/((b^6 - 12*a*b^4*c + 48*a^2*b^2*c^2 - 64*a^3*c^3)*d^2))^(1/4)*log(-I*(b^2 - 4*a*
c)*d*(1/((b^6 - 12*a*b^4*c + 48*a^2*b^2*c^2 - 64*a^3*c^3)*d^2))^(1/4) + sqrt(2*c*d*x + b*d)) + (1/((b^6 - 12*a
*b^4*c + 48*a^2*b^2*c^2 - 64*a^3*c^3)*d^2))^(1/4)*log(-(b^2 - 4*a*c)*d*(1/((b^6 - 12*a*b^4*c + 48*a^2*b^2*c^2
- 64*a^3*c^3)*d^2))^(1/4) + sqrt(2*c*d*x + b*d))

Sympy [F]

\[ \int \frac {1}{\sqrt {b d+2 c d x} \left (a+b x+c x^2\right )} \, dx=\int \frac {1}{\sqrt {d \left (b + 2 c x\right )} \left (a + b x + c x^{2}\right )}\, dx \]

[In]

integrate(1/(2*c*d*x+b*d)**(1/2)/(c*x**2+b*x+a),x)

[Out]

Integral(1/(sqrt(d*(b + 2*c*x))*(a + b*x + c*x**2)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\sqrt {b d+2 c d x} \left (a+b x+c x^2\right )} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(1/(2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more deta

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 393 vs. \(2 (81) = 162\).

Time = 0.30 (sec) , antiderivative size = 393, normalized size of antiderivative = 3.89 \[ \int \frac {1}{\sqrt {b d+2 c d x} \left (a+b x+c x^2\right )} \, dx=-\frac {\sqrt {2} {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} + 2 \, \sqrt {2 \, c d x + b d}\right )}}{2 \, {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}}}\right )}{b^{2} d - 4 \, a c d} - \frac {\sqrt {2} {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} - 2 \, \sqrt {2 \, c d x + b d}\right )}}{2 \, {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}}}\right )}{b^{2} d - 4 \, a c d} - \frac {{\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} \log \left (2 \, c d x + b d + \sqrt {2} {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} \sqrt {2 \, c d x + b d} + \sqrt {-b^{2} d^{2} + 4 \, a c d^{2}}\right )}{\sqrt {2} b^{2} d - 4 \, \sqrt {2} a c d} + \frac {{\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} \log \left (2 \, c d x + b d - \sqrt {2} {\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac {1}{4}} \sqrt {2 \, c d x + b d} + \sqrt {-b^{2} d^{2} + 4 \, a c d^{2}}\right )}{\sqrt {2} b^{2} d - 4 \, \sqrt {2} a c d} \]

[In]

integrate(1/(2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a),x, algorithm="giac")

[Out]

-sqrt(2)*(-b^2*d^2 + 4*a*c*d^2)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(-b^2*d^2 + 4*a*c*d^2)^(1/4) + 2*sqrt(2*c*d*
x + b*d))/(-b^2*d^2 + 4*a*c*d^2)^(1/4))/(b^2*d - 4*a*c*d) - sqrt(2)*(-b^2*d^2 + 4*a*c*d^2)^(1/4)*arctan(-1/2*s
qrt(2)*(sqrt(2)*(-b^2*d^2 + 4*a*c*d^2)^(1/4) - 2*sqrt(2*c*d*x + b*d))/(-b^2*d^2 + 4*a*c*d^2)^(1/4))/(b^2*d - 4
*a*c*d) - (-b^2*d^2 + 4*a*c*d^2)^(1/4)*log(2*c*d*x + b*d + sqrt(2)*(-b^2*d^2 + 4*a*c*d^2)^(1/4)*sqrt(2*c*d*x +
 b*d) + sqrt(-b^2*d^2 + 4*a*c*d^2))/(sqrt(2)*b^2*d - 4*sqrt(2)*a*c*d) + (-b^2*d^2 + 4*a*c*d^2)^(1/4)*log(2*c*d
*x + b*d - sqrt(2)*(-b^2*d^2 + 4*a*c*d^2)^(1/4)*sqrt(2*c*d*x + b*d) + sqrt(-b^2*d^2 + 4*a*c*d^2))/(sqrt(2)*b^2
*d - 4*sqrt(2)*a*c*d)

Mupad [B] (verification not implemented)

Time = 9.28 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.59 \[ \int \frac {1}{\sqrt {b d+2 c d x} \left (a+b x+c x^2\right )} \, dx=-\frac {2\,\mathrm {atan}\left (\frac {128\,d^{3/2}\,\sqrt {b\,d+2\,c\,d\,x}}{\left (\frac {128\,b^2\,d^2}{{\left (b^2-4\,a\,c\right )}^{3/2}}-\frac {512\,a\,c\,d^2}{{\left (b^2-4\,a\,c\right )}^{3/2}}\right )\,{\left (b^2-4\,a\,c\right )}^{3/4}}\right )}{\sqrt {d}\,{\left (b^2-4\,a\,c\right )}^{3/4}}-\frac {2\,\mathrm {atanh}\left (\frac {128\,d^{3/2}\,\sqrt {b\,d+2\,c\,d\,x}}{\left (\frac {128\,b^2\,d^2}{{\left (b^2-4\,a\,c\right )}^{3/2}}-\frac {512\,a\,c\,d^2}{{\left (b^2-4\,a\,c\right )}^{3/2}}\right )\,{\left (b^2-4\,a\,c\right )}^{3/4}}\right )}{\sqrt {d}\,{\left (b^2-4\,a\,c\right )}^{3/4}} \]

[In]

int(1/((b*d + 2*c*d*x)^(1/2)*(a + b*x + c*x^2)),x)

[Out]

- (2*atan((128*d^(3/2)*(b*d + 2*c*d*x)^(1/2))/(((128*b^2*d^2)/(b^2 - 4*a*c)^(3/2) - (512*a*c*d^2)/(b^2 - 4*a*c
)^(3/2))*(b^2 - 4*a*c)^(3/4))))/(d^(1/2)*(b^2 - 4*a*c)^(3/4)) - (2*atanh((128*d^(3/2)*(b*d + 2*c*d*x)^(1/2))/(
((128*b^2*d^2)/(b^2 - 4*a*c)^(3/2) - (512*a*c*d^2)/(b^2 - 4*a*c)^(3/2))*(b^2 - 4*a*c)^(3/4))))/(d^(1/2)*(b^2 -
 4*a*c)^(3/4))